

## A SESQUITERPENE LACTONE FROM *ARTEMISIA ARBORESCENS*\*<sup>†</sup>

G. GRANDOLINI, C. G. CASINOV<sup>I</sup>, P. BETTO, G. FARDELLA, F. MENICHINI, R. GABRIELE, P. BARBETTI,  
M. KAJTAR-PEREDY<sup>§</sup> and L. RADICS<sup>§</sup>

Istituto di Chimica Farmaceutica e Tecnica Farmaceutica, Università di Perugia, Italy, <sup>†</sup>Laboratorio di Chimica del Farmaco,  
Istituto Superiore di Sanità, Roma, Italy, <sup>‡</sup>Dipartimento di Chimica, Università della Calabria, Cosenza, Italy, <sup>§</sup>NMR Laboratory,  
Central Research Institute of Chemistry, P O Box 17, H-1525 Budapest, Hungary

(Received in revised form 9 February 1988)

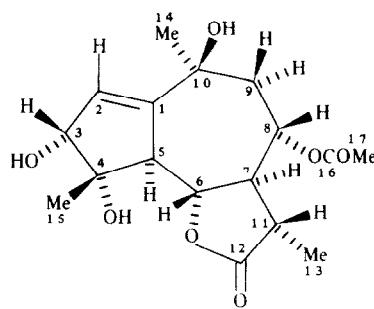
**Key Word Index:** *Artemisia arborescens*, Compositae, sesquiterpene lactone, guaianolide

**Abstract**—A new sesquiterpene lactone has been isolated from the aerial parts of *Artemisia arborescens*. By high-field two-dimensional NMR methods, its constitution and relative stereochemistries at the eight chiral centres have been determined

### INTRODUCTION

Following our studies on the Italian Flora [1] we have now reinvestigated the components of *Artemisia arborescens* L., a plant used for contraceptive purposes by the ancient Greeks and Arabs [2]. It is known that the genus *Artemisia* contains a variety of sesquiterpene lactones and various other compounds. The reinvestigation of the plant's aerial parts has afforded, besides the known products [3-8], the new sesquiterpene lactone **1**.

The mass spectrum of **1** (*m/z* 322 [ $M - H_2O$ ]<sup>+</sup>) gave the elemental composition, C<sub>17</sub>H<sub>24</sub>O<sub>7</sub>, while IR absorptions indicated the presence of a five-membered lactone ring ( $\nu_{\text{max}}^{\text{KBr}}$  1760 cm<sup>-1</sup>), an *O*-acyl function ( $\nu_{\text{max}}^{\text{KBr}}$  1735 cm<sup>-1</sup>) and hydroxy groups ( $\nu_{\text{max}}^{\text{KBr}}$  3400-3200 cm<sup>-1</sup>). The number of the latter functions followed from the <sup>1</sup>H NMR spectrum exhibiting 3 H/D-exchangeable proton signals. The inventory (C-17), multiplicity and chemical shift values of carbon atoms, as shown by the <sup>13</sup>C NMR spectrum, gave the number of unsaturated bonds as three, which, along with the gross structure, required that the constitution of **1** must be represented by a three-ring backbone. The actual structure and relative stereochemistry of the new product as portrayed in **1** were inferred from high-field <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C (100 MHz) NMR spectra. The assignments of the resonances in terms of proton and carbon-13 chemical shifts,  $\delta_{\text{H}}$ ,  $\delta_{\text{C}}$ , <sup>13</sup>C-multiplicities and interproton coupling constants,  $J_{\text{HH}}$ , were performed by means of standard one- and two-dimensional (1D, 2D) FT NMR techniques and the assigned spectral parameters are collected in Table 1.


First, a proton-proton chemical shift correlation (COSY) experiment [9] was run to establish <sup>1</sup>H-<sup>1</sup>H connectivities within the molecular framework and then, these pieces of information, combined with the results of a carbon-proton chemical shift correlation experiment (mediated by one-bond C-H couplings) [9], served as the

starting point for the determination of the carbon-carbon connectivities. Carbon-carbon sequences involving quaternary <sup>13</sup>C atoms were inferred from a series of carbon-proton chemical shift correlation experiments in which the relevant time periods were systematically varied such as to obtain observable <sup>1</sup>H-<sup>13</sup>C magnetization transfer for the expected range (1.5-12 Hz) of long-range <sup>n</sup>J<sub>CH</sub> ( $n=2, 3, 4$ ) couplings. The multiple bond correlations thus detected are also reported in Table 1 and labelled by the pertinent coupling pathways.

Examination of the data in Table 1 shows that these are best accommodated within the proposed formula **1**. Uncertainties due to regiosomerism resulting from the interchange of substituents at C-6 and C-8 were readily eliminated by means of selective <sup>1</sup>H-<sup>{1}</sup>H NOE experiments. Pre-irradiation of the resonance due to OAc protons gave rise to signal enhancement at the chemical shift of the C-8 proton.

Selective proton NOE experiments were also run in order to define the relative stereochemistries at chiral centres C-3, C-4 and C-10 while those at C-5, C-6, C-7, C-8 and C-11, as shown in **1**, followed directly from the observed interproton coupling data.

Signal enhancements observed upon selectively pre-irradiating the resonances due to 14-Me and 15-Me protons (see Table 1) proved distinctive for the relative steric disposition of substituents at C-3, C-4 and C-10.



**1**

\* Preliminary results were presented at the 1<sup>st</sup> Princess Chulabhorn Science Congress 1987—International Congress on Natural Products, Bangkok, Thailand, December 1987

Table 1. NMR spectral data of compound 1\*

| C     | $\delta_C$ | $^nJ_{C,H}$                                                       | $\delta_H$  | $^nJ_{H,H}$                                  |
|-------|------------|-------------------------------------------------------------------|-------------|----------------------------------------------|
| 1     | 151.18 (s) | $^3J_{H_3}, ^3J_{H_{9\beta}}, ^3J_{H_{14}}, ^2J_{H_5}, ^2J_{H_2}$ | —           | —                                            |
| 2     | 126.51 (d) | —                                                                 | 6.046       | $^3J_{2,3} 2.9, ^4J_{2,5} : 2.9$             |
| 3     | 78.77 (d)  | $^3J_{H_{15}}, ^2J_{H_2}, ^2J_{3\text{-OH}}$                      | 4.055       | $^3J_{3,3}, ^3\text{-OH} \leq 1$             |
| 4     | 79.74 (s)  | $^2J_{H_{15}}, ^3J_{H_2}, ^2J_{H_5}$                              | —           | —                                            |
| 5     | 56.85 (d)  | $^3J_{H_2}, ^3J_{H_{15}}, ^3J_{H_3}, ^3J_{H_7}$                   | 3.194       | $^3J_{5,6} : 11.5$                           |
| 6     | 76.45 (d)  | $^2J_{H_5}$                                                       | 4.532       | $^3J_{6,7} : 10.1$                           |
| 7     | 56.81 (d)  | $^3J_{H_{13}}, ^3J_{H_5}$                                         | 2.123       | $^3J_{7,8} : 10.6, ^3J_{7,11} 11.6$          |
| 8     | 70.86 (d)  | $^2J_{H_7}, ^2J_{H_{9\beta}}, ^2J_{H_{9\alpha}}$                  | 5.387       | $^3J_{8,9\beta} 3.3, ^3J_{8,9\alpha} : 10.1$ |
| 9     | 44.99 (t)  | $^3J_{H_{14}}$                                                    | 2.111 1.882 | $^2J_{9\alpha, 9\beta} -14.2$                |
| 10    | 69.31 (s)  | $^2J_{H_{14}}, ^2J_{H_{9\beta}}, ^3J_{H_2}$                       | —           | —                                            |
| 11    | 40.71 (d)  | $^2J_{H_{13}}$                                                    | 2.570       | $^3J_{11,13} 7.0$                            |
| 12    | 177.53 (s) | $^3J_{H_{13}}$                                                    | —           | —                                            |
| 13    | 14.96 (q)  | $^3J_{H_7}$                                                       | 1.285       | —                                            |
| 14    | 29.79 (q)  | $^3J_{H_{9\beta}}$                                                | 1.554       | —                                            |
| 15    | 21.23 (q)  | $^3J_{H_3}$                                                       | 1.355       | —                                            |
| 16    | 169.60 (s) | $^2J_{H_{17}}$                                                    | —           | —                                            |
| 17    | 21.20 (q)  | —                                                                 | 2.093       | —                                            |
| 3-OH  | —          | —                                                                 | 3.115       | —                                            |
| 4-OH  | —          | —                                                                 | 3.115†      | —                                            |
| 10-OH | —          | —                                                                 | 2.015†      | —                                            |

Selective  $^1H$ - $\{^1H\}$  NOE data [Irradiated resonance enhanced resonance (% enhancement)]

15-Me 6-H (5%), 3-H (5%), 5-H (2%)

14-Me 2-H (8%), 9-H $\beta$  (2.5%)

17-Me 8-H (2%)

\* In  $\text{CDCl}_3$  soln at ambient temp Chemical shifts are relative to internal TMS,  $^1H$ - $^1H$  coupling constants in Hz. Mutual interproton couplings are given only once, at their first occurrence in the Table.  $^nJ_{C,H}$  indicate detected cross-peaks in the multiple-bond carbon-proton chemical shift correlation maps.

† Assignments of these OH protons may be interchanged

## EXPERIMENTAL

**General.** Mass spectra, 70 eV. IR: KBr. All NMR spectra were run on a dilute (8 mg/0.6 ml)  $\text{CDCl}_3$  soln at 25°. Selective  $^1H$ - $\{^1H\}$  NOE experiments were performed in the difference mode. Merck's DC-Alufolien kieselgel 60 F<sub>254</sub> and Merck's kieselgel 60 (230–400 mesh ASTM) were used for TLC and CC. The HPLC separations were performed using a LiChrosorb Si 60, 5 m $\mu$ , semiprep. column (25 cm  $\times$  10 mm) under isocratic conditions ( $\text{CH}_2\text{Cl}_2$ -hexane-*i*-PrOH, 14:6:1) with a flow rate of 3 ml/min and detection at 254 nm.

*A* arborescens *L* was collected from the Calabria (Italy) mountains during July 1985 and authenticated by Prof. D. Puntillo, University of Calabria, a voucher specimen has been deposited at the Botanical Garden of the same University.

**Extraction and isolation** The plant material was air-dried in the shade at room temp and then powdered, this material (550 g) was exhaustively percolated with  $\text{Me}_2\text{CO}$ . The solvent was then evapd *in vacuo* and the residue (32 g) dissolved in  $\text{MeOH}-\text{H}_2\text{O}$  (1:1).

The soln, washed first with hexane, was then extracted with  $\text{CHCl}_3$ . The  $\text{CHCl}_3$  soluble fraction (16 g) was flash-chromatographed on a silica gel column. Elution with  $\text{CHCl}_3$  containing increasing amounts of  $\text{MeOH}$  (up to 5%) yielded four main fractions.

The first fraction contained only fats and sterols and has not been further examined. The more complicated second fraction, chromatographed on HPLC, eluent  $\text{CH}_2\text{Cl}_2$ -hexane-*i*-PrOH, afforded 7 mg of (+)sesamin [4] and 6 mg of (+)fargesin [4].

The third fraction furnished, after crystallization from EtOAc, 72 mg of arthemelin [3]. From the mother liquor by HPLC on the previously described conditions were obtained 18 mg of (+)yangambin [4] and 15 mg of (+)sesartemin [4]. The fourth fraction rechromatographed on a silica gel column, eluent  $\text{CHCl}_3$ -MeOH (19:1), afforded 20 mg of 1 as a foam. The identification of the known compounds was made by direct comparison with authentic samples.

3 $\alpha$ ,4 $\alpha$ -10 $\beta$ -Trihydroxy-8 $\alpha$ -acetoxyguaiian-12,6 $\alpha$ -olide (1). White prisms from EtOH, mp 140–145°. IR  $\nu_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 3400–3200, 1760, 1735, 1390–1280, 1140–1090. MS, *m/z* (rel. int.): 322 [M–18]<sup>+</sup> (20), 262 (73), 219 (87), 189 (54), 147 (100).  $^1H$  NMR and  $^{13}C$  NMR see Table 1.

**Acknowledgements**—This work was supported by the Ministero Pubblica Istruzione of Italy. The Authors are grateful to Mr Armando Rosini for his helpful technical assistance.

## REFERENCES

1. Barbetti, P., Chiappini, I., Fardella, G. and Menghini, A. (1985) *Planta Med.* 471
2. Jochle, W. (1962) *Ang. Chem., International Edition*, I, 541
3. Mazur, Y and Meisels, A. (1955) *Bull. Res. Council Israel* 5A, 3551
4. Greger, H and Hofer, O. (1980) *Tetrahedron*, 36, 3551.
5. Suchý, M., Herout, V and Šorm, F. (1964) *Coll. Czech. Chem. Comm.* 29, 1829.

- 6 Vokac, K., Samek, Z., Herout, V. and Šorm, F. (1969) *Coll. Czech Chem Comm* **34**, 2288  
 7 Cekan, Z., Herout, V. and Šorm, F. (1956) *Chem Ind London* 1234  
 8 Appendino, G. and Gariboldi, P. (1982) *Phytochemistry* **21**, 2555.  
 9. Bax, A. (1982) *Two Dimensional Nuclear Magnetic Resonance in Liquids* Delft University Press

*Phytochemistry*, Vol. 27, No. 11, pp. 3672-3673, 1988  
 Printed in Great Britain

0031 9422/88 \$3.00 + 0.00  
 Pergamon Press plc

## SESQUITERPENE LACTONES FROM *LEUZEA LONGIFOLIA*

SUSANA M. B. P. SANTOS, FERNANDO M. S. BRITO PALMA, JULIO G. URONES\* and MANUEL GRANDE\*

CECUL, Departamento de Química, Faculdade de Ciências, Universidade de Lisboa, 1200 Lisboa, Portugal, \*Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain

(Received 20 January 1988)

**Key Word Index**—*Leuzea longifolia*, Compositae; sesquiterpene lactones, guaianolides

**Abstract**—From aerial parts of *Leuzea longifolia*, three new natural products, 11 $\alpha$ ,13-dihydro-8 $\alpha$ -methacryloyloxyzaluzanine C, 11 $\alpha$ -13-dihydro-3 $\beta$ -(2-hydroxymethyl)acryloyloxyzaluzanine C, 11 $\alpha$ -13-dihydro-3 $\beta$ -methacryloyloxyzaluzanine C and a previously reported one, 11 $\alpha$ -13-dihydro-8 $\alpha$ -(2-hydroxymethyl)acryloyloxyzaluzanine C were isolated

### INTRODUCTION

In continuation of our research interests about Portuguese endemic plants, we have studied the aerial parts of *Leuzea longifolia*. From the acetone extract, dewaxed with hexane, three major compounds were isolated and identified as 11 $\alpha$ ,13-dihydro-8 $\alpha$ -methacryloyloxyzaluzanine C (1), 11 $\alpha$ ,13-dihydro-8 $\alpha$ -(2-hydroxymethyl)acryloyloxyzaluzanine C (2), and 11 $\alpha$ ,13-dihydro-3 $\beta$ -(2-hydroxymethyl)acryloyloxyzaluzanine C (3). Although compound 2 has been described in the literature [1] as a gum, we have obtained it as a crystalline solid. A minor lactone, which we were not able to purify, was identified as 11 $\alpha$ ,13-dihydro-3 $\beta$ -methacryloyloxyzaluzanine C (4).

### RESULTS AND DISCUSSION

The structure of compound 1 was deduced from spectral data, mainly  $^1\text{H}$  (Table 1) and  $^{13}\text{C}$  (Table 2) NMR, as well as  $\delta\text{H}/\delta\text{H}$  (COSY) and  $\delta\text{H}/\delta\text{C}$  (HCCORR) bi-dimensional correlations, which allowed unambiguous assignments of the signals. The  $^1\text{H}$  NMR spectrum of compound 1 showed four signals at  $\delta$  5.12 (1H, s), 5.14 (1H, s) and 5.35 (1H, t), 5.44 (1H, t), characteristic of two exomethylene protons. The *trans* fusion of the lactone ring is concluded from the coupling constant  $J_{6,7} = 11$  Hz, obtained from the peaks at  $\delta$  4.20 (1H, t) and 2.70 (1H, ddd) assigned to H-6 and H-7, respectively. A doublet at  $\delta$  1.16 (3H) and a double quartet at  $\delta$  2.80 (1H),  $J_{11,13} = 7.5$  Hz, showed the presence of the methyl group in a position  $\alpha$  to the lactonic carbonyl. The configuration of this methyl group was inferred from the coupling constant  $J_{7,11} = 7.5$  Hz.

Table 1  $^1\text{H}$  NMR spectra\* of compounds 1-4

| H   | 1         | 2         | 3        | 4         |
|-----|-----------|-----------|----------|-----------|
| 1   | 2.90 m    | 2.90 m    | 3.00 m   | 2.93 m    |
| 2   | 1.78 ddd  | 1.72 dt   | 1.88 dt  | 1.85 dt   |
| 2   | 2.31 ddd  | 2.30 dt   | 2.46 m   | 2.45 m    |
| 3   | 4.53 tt   | 4.51 tt   | 5.60 tt  | 5.57 m    |
| 5   | 2.90 m    | 2.90 m    | 3.00 m   | 2.93 m    |
| 6   | 4.20 br t | 4.19 br t | 4.18 dd  | 4.16 br t |
| 7   | 2.70 ddd  | 2.70 dt   | 2.80 m   | 2.80 m    |
| 8   | 4.90 ddd  | 4.93 ddd  | 3.71 ddd | 3.70 ddd  |
| 9   | 2.87 dd   | 2.83 dd   | 2.74 dd  | 2.73 dd   |
| 9   | 2.17 dd   | 2.18 dd   | 2.19 dd  | 2.20 dd   |
| 11  | 2.80 dq   | 2.76 qnt  | 2.80 m   | 2.80 m    |
| 13  | 1.16 d    | 1.14 d    | 1.27 d   | 1.27 d    |
| 14a | 5.14 br s | 5.13 br s | 5.03 s   | 5.02 s    |
| 14b | 5.12 br s | 5.09 br s |          |           |
| 15a | 5.44 t    | 5.42 t    | 5.38 t   | 5.36 t    |
| 15b | 5.35 t    | 5.33 t    | 5.28 t   | 5.26 t    |
| 3'a | 6.11 qnt  | 6.23 q    | 6.25 dt  | 6.13 s    |
| 3'b | 5.62 qnt  | 5.88 q    | 5.90 dt  | 5.60 s    |
| 4'  | 1.95 t    | 4.33 br s | 1.28 s   | 1.94 s    |

\* Measured in  $\text{CDCl}_3$  (1, 2, 4) at 200 MHz, int. ref.  $\text{CHCl}_3$  and  $\text{CD}_3\text{CD}$  (3), int. ref. TMS

$J$ (Hz) Compound 1  $2\alpha,3=2\beta,3=7.4$ ,  $3,15=2$ ,  $6,7=7.8=11$ ,  $7,11=11,13=7.5$ ,  $8,9\alpha=4.5$ ;  $8,9\beta=8.5$ ;  $9\alpha,9\beta=12.5$  Compound 2  $2\alpha,3=2\beta,3=7.4$ ,  $3,15=2$ ,  $6,7=7.8=10$ ;  $7,11=11,13=7.5$ ,  $8,9\alpha=4.5$ ,  $8,9\beta=8.4$ ;  $9\alpha,9\beta=12.8$  Compound 3  $2\alpha,3=2\beta,3=7.3$ ,  $3,15=2$ ,  $11,13=8$ ,  $8,9\alpha=4.5$ ,  $8,9\beta=9.2$ ,  $9\alpha,9\beta=12.2$  Compound 4  $3,15=2$ ,  $11,13=7.5$ ,  $8,9\alpha=4.5$ ,  $8,9\beta=8.5$ ,  $9\alpha,9\beta=13.4$